201 research outputs found

    Spectral Efficiency of Random Time-Hopping CDMA

    Full text link
    Traditionally paired with impulsive communications, Time-Hopping CDMA (TH-CDMA) is a multiple access technique that separates users in time by coding their transmissions into pulses occupying a subset of NsN_\mathsf{s} chips out of the total NN included in a symbol period, in contrast with traditional Direct-Sequence CDMA (DS-CDMA) where Ns=NN_\mathsf{s}=N. This work analyzes TH-CDMA with random spreading, by determining whether peculiar theoretical limits are identifiable, with both optimal and sub-optimal receiver structures, in particular in the archetypal case of sparse spreading, that is, Ns=1N_\mathsf{s}=1. Results indicate that TH-CDMA has a fundamentally different behavior than DS-CDMA, where the crucial role played by energy concentration, typical of time-hopping, directly relates with its intrinsic "uneven" use of degrees of freedom.Comment: 26 pages, 13 figure

    Low-Latency Short-Packet Transmissions: Fixed Length or HARQ?

    Get PDF
    We study short-packet communications, subject to latency and reliability constraints, under the premises of limited frequency diversity and no time diversity. The question addressed is whether, and when, hybrid automatic repeat request (HARQ) outperforms fixed-blocklength schemes with no feedback (FBL-NF) in such a setting. We derive an achievability bound for HARQ, under the assumption of a limited number of transmissions. The bound relies on pilot-assisted transmission to estimate the fading channel and scaled nearest-neighbor decoding at the receiver. We compare our achievability bound for HARQ to stateof-the-art achievability bounds for FBL-NF communications and show that for a given latency, reliability, number of information bits, and number of diversity branches, HARQ may significantly outperform FBL-NF. For example, for an average latency of 1 ms, a target error probability of 10^-3, 30 information bits, and 3 diversity branches, the gain in energy per bit is about 4 dB.Comment: 6 pages, 5 figures, accepted to GLOBECOM 201

    Reliable Transmission of Short Packets through Queues and Noisy Channels under Latency and Peak-Age Violation Guarantees

    Get PDF
    This work investigates the probability that the delay and the peak-age of information exceed a desired threshold in a point-to-point communication system with short information packets. The packets are generated according to a stationary memoryless Bernoulli process, placed in a single-server queue and then transmitted over a wireless channel. A variable-length stop-feedback coding scheme---a general strategy that encompasses simple automatic repetition request (ARQ) and more sophisticated hybrid ARQ techniques as special cases---is used by the transmitter to convey the information packets to the receiver. By leveraging finite-blocklength results, the delay violation and the peak-age violation probabilities are characterized without resorting to approximations based on large-deviation theory as in previous literature. Numerical results illuminate the dependence of delay and peak-age violation probability on system parameters such as the frame size and the undetected error probability, and on the chosen packet-management policy. The guidelines provided by our analysis are particularly useful for the design of low-latency ultra-reliable communication systems.Comment: To appear in IEEE journal on selected areas of communication (IEEE JSAC

    Group-blind detection with very large antenna arrays in the presence of pilot contamination

    Get PDF
    Massive MIMO is, in general, severely affected by pilot contamination. As opposed to traditional detectors, we propose a group-blind detector that takes into account the presence of pilot contamination. While sticking to the traditional structure of the training phase, where orthogonal pilot sequences are reused, we use the excess antennas at each base station to partially remove interference during the uplink data transmission phase. We analytically derive the asymptotic SINR achievable with group-blind detection, and confirm our findings by simulations. We show, in particular, that in an interference-limited scenario with one dominant interfering cell, the SINR can be doubled compared to non-group-blind detection.Comment: 5 pages, 4 figure

    Façonnement de l'Interférence en vue d'une Optimisation Globale d'un Système Moderne de Communication

    Get PDF
    A communication is impulsive whenever the information-bearing signal is burst-like in time. Examples of the impulsive concept are: impulse-radio signals, that is, wireless signals occurring within short intervals of time; optical signals conveyed by photons; speech signals represented by sound pressure variations; pulse-position modulated electrical signals; a sequence of arrival/departure events in a queue; neural spike trains in the brain. Understanding impulsive communications requires to identify what is peculiar to this transmission paradigm, that is, different from traditional continuous communications.In order to address the problem of understanding impulsive vs. non-impulsive communications, the framework of investigation must include the following aspects: the different interference statistics directly following from the impulsive signal structure; the different interaction of the impulsive signal with the physical medium; the actual possibility for impulsive communications of coding information into the time structure, relaxing the implicit assumption made in continuous transmissions that time is a mere support. This thesis partially addresses a few of the above issues, and draws future lines of investigation. In particular, we studied: multiple access channels where each user adopts time-hopping spread-spectrum; systems using a specific prefilter at the transmitter side, namely the transmit matched filter (also known as time reversal), particularly suited for ultrawide bandwidhts; the distribution function of interference for impulsive systems in several different settings.Une communication est impulsive chaque fois que le signal portant des informations est intermittent dans le temps et que la transmission se produit à rafales. Des exemples du concept impulsife sont : les signaux radio impulsifs, c’est-à-dire des signaux très courts dans le temps; les signaux optiques utilisé dans les systèmes de télécommunications; certains signaux acoustiques et, en particulier, les impulsions produites par le système glottale; les signaux électriques modulés en position d’impulsions; une séquence d’événements dans une file d’attente; les trains de potentiels neuronaux dans le système neuronal. Ce paradigme de transmission est différent des communications continues traditionnelles et la compréhension des communications impulsives est donc essentielle. Afin d’affronter le problème des communications impulsives, le cadre de la recherche doit inclure les aspects suivants : la statistique d’interférence qui suit directement la structure des signaux impulsifs; l’interaction du signal impulsif avec le milieu physique; la possibilité pour les communications impulsives de coder l’information dans la structure temporelle. Cette thèse adresse une partie des questions précédentes et trace des lignes indicatives pour de futures recherches. En particulier, nous avons étudié: un système d'accès multiple où les utilisateurs adoptent des signaux avec étalement de spectre par saut temporel (time-hopping spread spectrum) pour communiquer vers un récepteur commun; un système avec un préfiltre à l'émetteur, et plus précisément un transmit matched filter, également connu comme time reversal dans la littérature de systèmes à bande ultra large; un modèle d'interférence pour des signaux impulsifs

    Fundamental Limits of Low-Density Spreading NOMA with Fading

    Full text link
    Spectral efficiency of low-density spreading non-orthogonal multiple access channels in the presence of fading is derived for linear detection with independent decoding as well as optimum decoding. The large system limit, where both the number of users and number of signal dimensions grow with fixed ratio, called load, is considered. In the case of optimum decoding, it is found that low-density spreading underperforms dense spreading for all loads. Conversely, linear detection is characterized by different behaviors in the underloaded vs. overloaded regimes. In particular, it is shown that spectral efficiency changes smoothly as load increases. However, in the overloaded regime, the spectral efficiency of low- density spreading is higher than that of dense spreading

    Delay and Peak-Age Violation Probability in Short-Packet Transmissions

    Get PDF
    This paper investigates the distribution of delay and peak age of information in a communication system where packets, generated according to an independent and identically distributed Bernoulli process, are placed in a single-server queue with first-come first-served discipline and transmitted over an additive white Gaussian noise (AWGN) channel. When a packet is correctly decoded, the sender receives an instantaneous error-free positive acknowledgment, upon which it removes the packet from the buffer. In the case of negative acknowledgment, the packet is retransmitted. By leveraging finite-blocklength results for the AWGN channel, we characterize the delay violation and the peak-age violation probability without resorting to approximations based on large deviation theory as in previous literature. Our analysis reveals that there exists an optimum blocklength that minimizes the delay violation and the peak-age violation probabilities. We also show that one can find two blocklength values that result in very similar average delay but significantly different delay violation probabilities. This highlights the importance of focusing on violation probabilities rather than on averages.Comment: 5 pages, 5 figures, accepted for IEEE International Symposium on Information Theory 2018, Edit: corrected peak-age of information formul

    Low-Latency Short-Packet Transmissions: Fixed Length or HARQ?

    Get PDF
    We study short-packet communications, subject to latency and reliability constraints, under the premises of limited frequency diversity and no time diversity. The question addressed is whether, and when, hybrid automatic repeat request (HARQ) outperforms fixed-blocklength schemes with no feedback (FBL-NF) in such a setting. We derive an achievability bound for HARQ, under the assumption of a limited number of transmissions. The bound relies on pilot-assisted transmission to estimate the fading channel and scaled nearest-neighbor decoding at the receiver. We compare our achievability bound for HARQ to stateof-the-art achievability bounds for FBL-NF communications and show that for a given latency, reliability, number of information bits, and number of diversity branches, HARQ may significantly outperform FBL-NF. For example, for an average latency of 1 ms, a target error probability of 10(-3), 30 information bits, and 3 diversity branches, the gain in energy per bit is about 4 dB

    Pilot-Assisted Short-Packet Transmission over Multiantenna Fading Channels: A 5G Case Study

    Get PDF
    Leveraging recent results in finite-blocklength information theory, we investigate the problem of designing a control channel in a 5G system. The setup involves the transmission, under stringent latency and reliability constraints, of a short data packet containing a small information payload, over a propagation channel that offers limited frequency diversity and no time diversity. We present an achievability bound, built upon the random-coding union bound with parameter s (Martinez & Guill\ue9n i F\ue0bregas, 2011), which relies on quadrature phase-shift keying modulation, pilot-assisted transmission to estimate the fading channel, and scaled nearest-neighbor decoding at the receiver. Using our achievability bound, we determine how many pilot symbols should be transmitted to optimally trade between channel-estimation errors and rate loss due to pilot overhead. Our analysis also reveals the importance of using multiple antennas at the transmitter and/or the receiver to provide the spatial diversity needed to meet the stringent reliability constraint
    • …
    corecore